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ABSTRACT

A non-similar boundary layer theory for air blowing over a water layer on a flat plate
is formulated and studied as a two-fluid problem in which the position of the interface is
unknown. The problem is considered at large Reynolds number (based on x), away from
the leading edge. We derive a simple non-similar analytic solution of the problem for which
the interface height is proportional to x1/ 4 and the water and air flow satisfy the Blasius
boundary layer equations, with a linear profile in the water and a Blasius profile in the air.
Numerical studies of the initial value problem suggests that this asymptotic, non-similar
air-water buundary layer solution is a global attractor for all initial conditions.

1The work of the first and third authors was supported by the National Aeronautics and Space Adminis-
tration under NASA Contract No. NAS1-19480 while they were in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
The work was also supported by the National Science Foundation, the DOE, Department of Basic Energy
Sciences, the U.S. Army, Mathematics and AHPCRC, and the Minnesota Supercomputer Center. The first
author was also supported by the U. S. Air Force, Wright Laboratories, Flight Dynamics Directorate.

2This author's work was supported by the National Science Foundation.
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1 Introduction

The effects of water layers driven over solid surfaces by wind are of interest in the performance
of aircraft in rain, for the de-icing of airplane wings and surely in many other applications.
Since such problems are intrinsically of a boundary layer type and since the more interesting
phenomenon which might arise, like the formation of waves, film rupture and the like are
probably best framed in terms of stability, it is necessary to derive the analytic forms that
such flows will take on when instability is neglected. This derivation is carried out here.

Previous works related to the present one are by Yih (1990), who modeled the de-icing
problem, and by Wang (1992), who consdered the development of boundary layers in the
shearing flow of one fluid over another. Both works are flawed by assuming rather than
finding the shape of the interface. In the case treated by Wang, the interface is flat but the
jump of the normal stress is not zero. Yih assumed that flow in the air is a Blasius flow and
the flow in the water is a simple shear. This is a correct form for the boundary layer, as we
shall show, hi hb- neglects the variation of film thickness with x and so cannot enforce the
kinematic condition at the interface or find its shape.

In this work, we formulate a non-similar boundary layer theory retaining all terms which
decay faster than 1/ý, ý = x(U/2v2X)' 1/2 , where v2 is the kinematic viscosity of air. All of

the interface conditions are enforced in this asymptotic regime. An effect of the small but
non-zero vertical velocity component at the interface is to force the interface to grow like
x1/4 when the boundary layer in the air grows like x1/2 . The interface looks thin on the
scale of the boundary layer. Asymptotically, at large x, the water and air satisfy the Blasius
boundary layer equations with a linear profile in the water and the flat plate profile in the
air. This non-similar (or coupled self-similar) solution appears to be a global attractor for
all initial conditions.

2 Governing Equations

A water film of height y = h(x) is flowing on a flat plate driven by shear stresses emanating
from an air stream with streaming velocity U. We seek the nature of the flow under the
circumstances which give rise to Blasius boundary layers in the flow of one fluid over a flat
plate. This motivates the introduction of the same scales that are used in the classical ca.se,
giving

=(UX)1/ 2  (1)

r7=Y U ) 1/2

'= h(x)

U

v = VU0,21
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Pp = P2 U2

(2v2xU)'/
2

where u = f' is the x component of velocity, v = 7f- f - ý 2L is the y component if velocity,
r is the time, p is the pressure and f is the stream function. The parameters p2 and v2 are
for air; subscript I is for water.

These scales are introduced into the Navier-Stokes equations which are written below in
the new variables without approximation. The continuity equation becomes

dv &u d u
O=0 . (2)

The momentum equations are

idu 7i Ou I cOu I du
U- 4 + •-UW-- + j4-2VTy, (3)

p+ I)+ 1 72 02U- I au_Lp +- (2 + + j-2 - + T),
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I1 Ip 1  72 &V I2 v 1 2v 577 dv 3 Ov 3v
- 2 C7 + J((4-4 + j-+ + •• + 6 + -+ "

In the interface equations written below, [.] designates the jump (.)I - (.)2. At the interface
q = q*(y = h(x)), the velocity is continuous,

[U] = 0, (5)

[V]= 0. (6)

The shear stress is also continuous across q = 7*,

( ( + + + ))( I + )au)19 V1 =Io (7)

The jump in the normal stress is balanced by interfacial tension,

( + 1a'l* 21 9V (8)

•*7 10~r/) 1 u 1 dv r" dv 1- ++ 122 o• 2
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where G = (g/U 2 ) (2v 2x/U)1/ 2 , g is the acceleration due to gravity, S = T/(v 2p2U), and T is

the coefficient of surface tension. Density and viscosity are normalized by the corresponding
properties of the air

{ LI. 0<71<r* (9)

71 * < 77,

0 77< 7* (10)

71* < 71,

The kinematic equation of the free surface is written in the boundary layer coordinates

44 8r7* +air 1 v

3 Asymptotic solution for large

Here we exhibit a special solution of our coupled air-water system which will be shown later
to be a global attractor of non-similar boundary layer solutions. We s.oart by making several
assumptions. First we assume that for large x (large 4) the horizontal velocity component
in the water is linear in y, and there is a similarity solution in the air with f(0) = f'(0) = 0,
and f"(0) is constant. In the air we write

kY-L-(12)
u =f'(9/), 77- k Y/(12

and in the water

u = c(x)y, Q = udy ='? )h2 = constant. (13)

Secondly we assume that the interface position 77* -+ 0 as 4 --+ oo. This assumption is
equivalent to assuming that as 4 -- o the liquid layer is a vanishingly small fraction of the
boundary layer in the air.

We are going to show that the continuity of the shear stress across the interface 71* implies
that c = Ax- 11 2, with A a constant, so that u = A77 can be expressed in terms of 77 alone.
The interface is on y = h(x), 71 = r7* = kP-,h. The shear stress is continuous

O9u iu h
y = P2T-- at 7*= k-. (14)

Hence
,,c(X) = 871 k .kh (15)

Now for large x, we have assumed that 77* = h(x)/x 1/ 2 --+ 0, so that f"(rq*) /f"(0) which
is constant. Then

c(X) = J12kf"(0) A (16)

Using (13), we may write
h2=2Qx 1 /2 •! B 2x'1/2  (17)

A
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h = Bx1/ 4. (18)

Using (18), we find that
kBx/4 kB(19),77 x/ = z- -' . 19

Now
f'(i7*) = u(h(x),x). (20)

For large x, -q* --* 0, so that f'(7*) --+ f'(0) = 0. Actually we know that u tends to zero
because the mass flux is constant but the flow area (18) keeps increasing. We may also show
that v(h(x),x) tends to zero for large x. We can do this in different ways. Suppose we
multiply the kinematic condition (11) by .u and let ý --* 00.

0*

v = -• + ui'. (21)

From (19) we know that, since. = kx 1/2, as - oo,

17- k /2 B (22)

Thus as -- oo,
dr* k3/ 2 B
ZO7 = ý ,•/ --+ 0. (23)

Sinceu - 0 as - oo, so also v -*0. So as.• -• o, both u(h(x), x) - 0 and v(h(x), x) -+ 0;
that is f'(r7*) -- 0 and f(r/*) -+ 0. The interface conditions then become the same as the
boundary conditions for a Blasius boundary layer in the absence of the water layer but
displaced, and so the velocity in the air is given by the Blasius solution for the boundary
layer over a flat plate. The solution in the water f' = AT also satisfies the Blasius equation
f f" + v2 f"' = 0, 0 < 77 t TI* --+ 0 and implies that the jump conditions [f] = [f'] = 0 may
be replaced with the Blasius boundary conditions f(O) = f'(0) = 0 applied upon a solid
surface.

This shows that our original assumptions are self-consistent. The reader may verify
that the solution (13) with c(x) given by (16) is self-similar (satisfies (24) without the the
bracketed term). The main good luck that we have is that q* -+ 0 for large x even though
h(x) --+00

4 Non-similar boundary layers

Since the asymptotic solution for large ý is similar, but not in the usual sense, we are
motivated to see if this solution can be embedded in a large class of non-similar solutions for
large ý (large Reynolds number Ux/2V2) and to investigate the possibility that the asymptotic
solution enjoys a special status as a global attractor for all solutions of this non-similar family.

Self similar boundary layers depend only on q and not on 4. The ý derivatives of u, v and
y* may be small, of the order of •- n > 1, when ý is large. We retain those terms in each
equation which are 0(1), dropping all terms of 0(ý-'n), For this computation we assumed
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that the first derivative of u with respect to ý scale with ý-', the second derivative with -2
and 2 = O(-3/2). These scalings can be verified a posteriori. We find that

ff" + vf"' - f f" = , (24)

and at r 7 17*:

= 0, 0, (A =0, [(f"I = 0, (pI = (pig??*, - 1 v _) (25)

Equation (24) can be found in Schlichting (1987). We may remark that the contributions
of the viscous terms in the normal stress balance are ý-2 times the terms retained and the
surface tension terms are ý-s times those retained.
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5 Solutions of initial value problems for the non-similar,
two-fluid boundary layer equation

5.1 Evolution of a profile which is initially parabolic in segments.

Since the non-similar solutions depend oil ý, we are obliged to consider the evolution of flows
prescribed at some initial position ý = ,o. Fortunately our simulations of those initial value
problems indicate a rapid decay from initial values to the asymptotic solution described in
§3. This situation is not unfamiliar. In the classical theory of boundary layers, the Blasius
solution, the similarity solution, is a global attractor for all initial value problems which are
not similar (see Serrin (1967)). In our case the attractor cannot be self-similar, but the non-
similar solution of §3 arises asymptotically, for large ý from all initial conditions explored.
The first initial condition we used to solve (24) and (25) is plotted below.

6.0 02

6.0

02

4.0

T1 3.0• !O.A

2.0

01.0 0.1 0.2 0.3 0'A 05 0i.6 0 i.? 0 .4 i1.0 .0 0.02 0.64 0.60 0. 10.C"0 0.12 0.14 0.16 0.1A G0

f' f'(1 I1')

(a) (b)
Figure 1. Parabolic initial conditiuon oa.med for 'th horizontal velocity component f. with
,q* = 0.15 and o = 50. (a) Initial condition. (b) Detailed plot of initial condition at the

interface.

For this initial condition* -= 0.15 and o 50. These values were chosen to be representative
of conditions discussed by Hastings and Manuel (1985), in which they describe the results
of their wind tunnel measurements of a wing in simulated rain. In the above profile, for
0 < T) < i*, f' is parabolic with f". being positive. For ir/ < r) < 3.5, f' is parabolic with f'
being negative, and for 77 > 3.5, f' 1.0.

We solved (24) and (25) subject to the aformentioned initial conditions for ý > & using
a finite difference scheme found in Schlichting (1987). This scheme is iterative using second-
order differencing for the 77 derivatives, and a first-order, implicit Euler differencing for the ý
derivatives. We assumed an interface q" ac", where a (o)/(o) and found the n(ý)
given in figure 2.
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Figure 2. Plot of n for the non-similar boundary layer with initial conditions from figure 1.

The exponent function n(ý) decays rapidly to -1/2, corresponding to a limiting power
law increase h(x) OX X114 of the interface height as given by the asymptotic solution shown
in figure 1. For 4 not much larger than 4o the horizontal velocity component f' becomes
linear in qj, f' = c(4)i), in the water layer and remains so for all greater 4. The shear stress
in the water, g1 c, is directly related to the shear stress in the air at the interface through
the tangential stress condition found in (25). From our calculations we find that the shear
stress in the air at the interface, f", asymptotically tends to the shear stress in the Blasius
boundary layer of a single fluid over a flat plate at the plate surface, as shown in figure 3.

0,I 1.0

0.10

0.11

0..

11 0.10 J -- -- ------ -------- --- ------ -----

A

0o.

'.0 0. 0 . 0.64 0 .4 0."0 0.42 0. 0.16 0.140 0.CA 090 6.06 0.10 50.16 i2 i02 6i.30 0.3

(a) (b)
Figure 3 (a) Detailed plot of boundary layer solution in the water layer at • = 50.0675 for
the initial conditions of figure 1. (b) Shear stress, f", in the air at the interface, 77* =
for 4 > 4o.

Notice that the exponent function n(4) tends to its asymptotic value extremely rapid, while
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the shear stress at the intertace in die air f" has a much slower decay. The reason for this
difference is n(1c) becomes nearly -1/2 as soon as the horizontal velocity component ill tile
water becomes linear, which occurs for ý not very much greater than •. Figure 3 shows that

the flow has not vet reached its as, :ptotic form, since the shear stress at the interface in

the air is appreciably different f: i its asymptotic value. The flow then slowly tends to its
asymptotic state. The flow i, sn-similar for finite ý because the boundary layer height and
the interface do not scale the same. Asymptotically one may say the flow is similar because
r/ goes to zero and tae flow in the air is the self-similar Blasius profile.

5.2 Evu'ution of another profile which is initially parabolic in
segments.

In the next example we used the same initial f'(iq) for q > 1j as in figure 1(a). but the profile

shown in figure 1(b) was replaced with the one shown in figure 4.

02

vl ,

Figure 4. Initial profile in the water at • = G. The profile in the air is shown in figure 1(a).

In figure 5 we show the evolution of the exponent n(4) for 4 > 'o for the aformentioned
initial condition. Obviously n(4) --+ -1/2 for large ý and rt" = a<- 1/2 for large ý. The
solution given in §3 is attained asymptotically.
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Figure 5. Exponent function n(4) for " =a

5.3 Evolution of a profile which is initially in similarity form but
with r7(ýo) = 0.15 > 0.

The initial condition shown in figure 6 is generated from (24) and (25) when the ý derivatives
are set to zero, so that

ff" + Vf"- = 0, (26)

and at q = :

oq = 0, [f'] = 0, [f] = 0, [,Of"] = 0, [p] = [p]g,7. (27)

This system is solved using a iterative finite difference scheme using second order differencing
and gives rise to the profiles shown in figure 6.

0.10wtouwaelar
6J 0.1e F without water layer

0.14

ILOM

0.1"

I1.1• 3. j• 111.0.12°°•'l°l

20

0.'

1ft 0.0

0*.0 0.1 0.2 0.3 0.4 0.0 06 0.7 " 0' . 0.0 1• ,.0 0.0000 0.000 0.0•00 0.0012 0.0016 0.00*20

If

(a)()
Figure 6. Solution f'(77) of (26) and (27). (a) 77 > 0.15. (b) q < 0.15. The Blasiis solution
of (24) for f(0.15) = f'(0.15) = 0 is also shown in (b).
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The profiles in figure 6 were used for initial values in the non-similar equations (24) and
(25) and they evolved to the coupled self-similar solutions described in §3 in which i'(ý) -+ 0.
The difference between the solution in the air and the classical Blasius flat plate solution
also tends to zero. A graph of the exponent function for this example is shown figure 7.

4.6l006

4.6007

4.002'

4.6006.
4.6017

.0o 100.0 160.0 200.0 260.0 300.o 350.o 400.0 46b.0 600.0 60.0 6010.0

Figure 7. Exponent function n(ý) for il - a= (< ) for the initial conditions of figure 6.

In these examples and in all the others, which we tried but are not shown, the asymptotic
solution given in §3 is ultimately attained.

6 Behavior of ý derivatives of the non-similar solution

In deriving the system which lead to the above solutions, we assumed that first and second
derivatives of u and q* with respect to s were inversely proportional to c-", n > 1. ZFrom

our solution we find that 2 scales like C" and 2 scales like -5/2, in agreement with
our scalings. Since ý scales with xl/2, the interface position scales with X1/4.

In order to examine the ý derivatives of u, we define two functions,

F(Of' (28)

F2 (77 0 2&.f, (29)

Depending upon the initial conditions chosen at ý,, F1(r7, so) and F2(r7, ýo) may be extremely
large. However, for larger values of ý the horizontal velocity component in the water becomes
linear in 77, n(ý) tends to -1/2 and F1(17, ý) < 1, F2(7) < 1 (see figure 8).
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-1.64.5 4A5 4.7 4.6 4"6 4A 4"3 42 4.1 0.0 4.1 6.6 6.1 6.2 6.3 U i.5 6.6 6.7 06 i.9 1.6F, F,

Figure 8. Plot of F1 (q,,) and F2(qý) versus q for • = 50.01 for the flow plotted in figure 6.

IFI and IF21 decrease, as shown in figure 9, although the decrease in IFI is very small.
Since as 4 --* oo, 1* -- 0 and the flow in the air goes to the Blasius boundary, both F1 --+ 0
and F2 --+ 0 as 00oo.

TI1

*. SJ

A.A 4.A 4.6 4.7 .6 4.A 4A 4.. 3 ..$ 4.1 . .4 4.1 6.6 e..1 i. i.3 $A G". 6.6 6.7 i 6.6 1"0

Figure 9. Plot of F,(17,t) and F2(i/t) versus r for t = 129.1 for the flow plotted in figure 6.

Then since F, and F2 are both 0(1), the assumptions that were made in deriving (24) and
(25) are shown to hold.
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7 Concluding remarks

The analysis given in this paper can be extended to two-fluid boundary layer problems with
other free streams, say U =- LX. It is also probable that the solution given in §3 and the
other limiting solutions to which we have just alluded are unique large x limits of steady
coupled air-water solutions of the Navier-Stokes equations with different initial profiles at
X = X.
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